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RESONANCE, PARTICLE TRAPPING, AND LANDAU DAMPING IN

FINITE AMPLITUDE OBLIQUELY PROPAGATING WAVES

P. J. Palmadesso

Goddard Space Flight Center

Greenbelt, Maryland

ABSTRACT

The equations of motion for a particle in resonance with a small finite ampli-

tude wave (w, k) are solved approximately, using secularity free perturbation

theory. The wave propagates at an arbitrary angle to a uniform background

magnetic field, ~o' in an infinite collisionless plasma. The wave fields include

a longitudinal electrostatic component and elliptically polarized transverse

electric and magnetic components. The trajectories of trapped and resonant

untrapped particles are described, for each of the possible wave-particle

resonances defined by the condition k V - w"" N q B 1m, where N is an
z z 0

integer. These trajectories are used to construct an estimate of the nonlinear

time dependent Landau damping rate of the wave.

iii



1. INTRODUeTION

The trapping of particles by finite amplitude narrowband waves leads to a

number of important nonlinear effects. Particle trapping is responsible for the

saturation of the Landau damping/amplification mechanism in the nonlinear

regime. I, 2 Electrostatic trapped particle instabilities, 3 -6 and the triggering

of V.L.F. emissions by finite amplitude whistlers in the magnetosphere7
, 8

provide other examples of effects in which trapped particles playa major role.

Explanations of these phenomena depend heavily on a knowledge of the tra­

jectories of individual resonant particles, Le., trapped and nearly trapped

particles, in the fields of the primary wave. In all of the examples mentioned

above, the primary wave is either an electrostatic wave or a circularly polarized

transverse wave propagating parallel to a background magnetic field. The

trajectories of particles in fields of these types are well known. 1
, 9

In this paper we obtain relatively simple approximate analytic expressions

which describe the motion of single particles in resonance with a wave of some­

what more general type. We consider a small finite amplitude wave propagating

at an arbitrary angle to a uniform background magnetic field in an infinite

collisionless plasma. The wave has both longitudinal electrostatic and trans­

verse electromagnetic components.

An immediate application of the results of the trajectory analysis is possible.

The approximate orbit expressions for resonant motion in an oblique wave have a
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form which is similar in some important respects to the corresponding expres-

sions for motion in an electrostatic wave or a parallel propagating transverse

wave. By recognizing this, one is able to obtain in a simple wayan estimate

of the time dependent collisionless damping coefficient for a finite amplitude

oblique wave. One finds that after some initial exponential damping the wave

executes damped amplitude fluctuations. In the absence of instabilities, the wave

amplitude would ultimately become constant.

We begin in Sec. II by solving the equations of motion for a single non-

relativistic particle, using secularity-free perturbation theory. 10 The constants

of motion and bounce frequencies are found, and the time dependence of the

particle velocity is determined. Finally, in Sec. III, an estimate of the time

dependent damping coefficient is obtained.

II. PARTICLE ORBITS

Consider an electromagnetic wave (w, It) propagating at an angle a to a

magnetic field (J~o) in a plasma. If the wave amplitude is not too large, it is

reasonable to assume that the propagation characteristics of the wave are pri-

marily determined by the nonresonant particles which form the bulk of the

plasma, and that these particles are describable in terms of the linearized

theory. Given the additional assumption that y / w < < 1, where y is the damping

11
rate of the wave, the wave fields may be written in the form
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t w (I!, t) =.tk ~ sin e + (w/k) Qw x .tk'

where

e = It· I! - w t,

.tk = It/k,

and the coordinate system is oriented so that

.ty =(Qo X .tx)/Bo'

e =Bo/Bo.,,-,z "-'

(1)

(2)

Two types of wave-particle resonance are possible with obliquely propagating

waves. Cyclotron resonance occurs when the rotating wave fields seen by a

moving particle turn with a frequency close to a multiple of the particles gyra-

tion frequency, Do; Le., when

w - k V + N Do '" 0z z

where Vz is the component of the lab frame particle velocity parallel to B o' and

N is an integer. In the simplest case (N = ± 1), this means that the average

value of the angle between the wave electric field and the perpendicular 12 velocity

vector of the gyrating particle changes very slowly. The power delivered to the

particle, tw'~' then has a slowly varying component, and large amounts of energy

are exchanged. Particles for which ~ t w' ~ is bounded are said to be trapped.

3



Note that it is necessary to speak of the average value of ~ E ,V" when describ-
rvW rv....

ing resonance. The plane in which particles gyrate, in zero order, differs from

both the plane of polarization of ~w' and the planes of constant phase.

Electrostatic resonance is possible if w/k z < c, where w/k z is the speed

along Ilo of a point of constant phase. In a frame moving with velocity (w/k ) e ,
....... Z ""'v Z

the wave has only a longitudinal electrostatic component and a transverse mag-

netic component, and both are stationary. Particles nearly at rest in this frame

(w - k z Vz rv 0) experience electrostatic forces which vary only slowly, so that

~W· ~ again has a slowly varying component. Such particles may be trapped in

the potential wells of the longitudinal field.

Equations of Motion

If we introduce the velocity variable

v =V - (w/k ) e
""'v rv Z ""'v Z

and use (1) and (2), the equation of motion

can be written in the form

mv= q {l<" e sin e + v x (8 + 8 )}rv K rvk rv rvO rvW

where

~ =~ + (w/k) B1 tan Q.

4
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The introduction of the variable X, may be viewed as a mathematical change of

variables, and does not presuppose the existence of a physical coordinate sys-

tern moving with velocity (w/k) e .
"'-'z

It follows easily from (4) that the energy

1
E =-m V 2 + (q/k) ~ cos e

2

is a constant of the motion.

In a cylindrical coordinate system with axis parallel to Qo' (4) has the

following components:

d vII
d t = (q/m) {F1: cos a sin e - v1 [B_ cos (e - f) - B+ cos (e + f)]} (5a)

where

v = (v 2 + v 2) 1/2
1 x y

f = t an - 1 (v / v )
y x

5
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and B 1. = B . e .' In addition, we have the equation
J "'w "'J

For nonresonant particles, these equations can be solved to first order

(6)

in the wave amplitude by integrating the right hand side of equations (5a-c), (6)

along the unperturbed trajectories, defined by

Y eO) - v
II - 110'

where Do = q Bo1m and v II 0 ' vlo ' tj;0 ' eo are constants. The first order

correction terms calculated in this manner oscillate rapidly in time and remain

small.

Orbit expressions calculated in this way for resonant particles contain

slowly varying, growing terms which cause the perturbation expansion to

break down after a finite time, as the actual particle trajectories drift farther

and farther away from the unperturbed trajectories. This breakdown may be

avoided by defining a new zero order trajectory. One replaces the constants

v 110 ... eo by parameters which vary slowly in time in such a way that the

new zero order trajectory remains close to the actual trajectory.10

6



V(O') =V (T)
11 II'

./,(0') rv n
't' = ..pO (T) - H O t ,

e(O') =e(T) + [k y vl (T)/DoJ· cos [~(T) - Do tJ·

- (ky vlO/Do ) cos..po

+kzv II (T) t,

where

T =TJ 0 t, TJO < < 1.

For example, if we substitute

,
e=e(O) (T, t)+e(l) (T, t) + ..

in (5a), discard terms of second or higher order in the wave amplitude, and

Fourier expand the right hand side with respect to t, we obtain

where v == e . v ( 1)111 rvz 'V '

7

(8)

(9)



and In is the Bessel function of order n. When the resonance condition

is satisfied, the acceleration d VII 1 /dt has a slowly varying component (the n =

N term in the series) which produces secularities in vl1 1 unless we choose

VII (T) such that

where

(10)

(11)

Given (10), one can integrate (7) with respect to t, treating the slow variable T

as a constant, to obtain

fro

V I11 '" m
q ~ {E k' cos a I

n
(ul ) + vI [B T (Ul ) + B T (u )]}L - . n+1 + . n-1 1

n;iN

{cos Xn - cos [(k z vII - n Do) t + x)}
x

(k z vII - n Do)

Equations for the remaining slow variables,

(12 )

8



T) d ~ =~{ vII [B T (u) B J (u)]o d T m v _. N+ 1 I - + N-l I
vI

+ ( ~ )~ sin a [IN-l (uI ) - I N+ 1 (uI )]
\2 vI

+ B
"

tan a J N ("i)} cos ¢N'

and for the first order corrections to the velocity components vI and t/J ,

9

(14)

(15)

(16)



are obtained in the same way.

Reduction of Phase Space

(17)

Only three different dependent variables (vII '\' and ¢N) appear in the right

hand sides of (10), (13), (14), and (15). With the aid of (9) and (11), equations

(14) and (15) may be combined to yield a single equation for d¢/dT. Then, after

using the recursion formulas for the Bessel functions and letting T ~ 71
0

t, one

obtains the following closed set of equations:

dVi ~ (ND)-- =-~ E' __0 J (u)
dt m k k"-' N 1

Vi

10



where J' (U
l

) == dJ Idu
l

, u
l

= k VI 10 . Once V ,v, and ¢. are known, fj
N N y 0 II I N

and ~ may be obtained immediately from (14) and (15) by quadrature.

Exact equations for a particle in resonance with an electrostatic wave

(20)

propagating along 8
0

may be recovered from (18)-(20) by setting (B ,B ,a,
'V lx ly

k , N) = O. Similarly, (18)-(20) reduce to exact equations for a particle iny

resonance with a parallel propagating, right circularly polarized transverse

wave, in the limit (E~, a, k) = 0, B
lx

= B
ly

' N = 1. In these limits there are

no rapidly oscillating fields acting on a resonant particle, hence the first order

corrections vanish.

Solution of the Slow Variable Equations

It follows from (18) and (19) that

where v 2 = vl~ + V1
2 • But, from (20),

and, from (19),

d
d t [(q/k) E~ I

N
(ul )] =0 [( ampl i tude)2]

11
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Hence

(23)

If we combine (21) and (23) and define

(24)

we find that dEN/dt rv 0 [(amp.)2]; thus EN is a constant, to the present order

of approximation. EN is the energy associated with the slow or averaged motion.

If one begins by differentiating m (vII - N D/k2)2/2 instead of m v2/2, and

then follows the same procedure used above, a second constant is obtained:

(25)

E and W become exact constants of motion in the limit of parallel propagation,
N N

with N = 0 for an electrostatic wave and N = ±l for a circularly polarized trans-

verse wave.

With the aid of (25) and (22) the resonance condition may be given somewhat

more precisely than before: a particle will be termed resonant if the kinetic

12



energy m (v - NO /k )2/2, which is '" m k- 2 (d ¢. /dt)2/2 by (22). is com-
il "'0 z z N

parable to or less than the amplitude of the effective potential defined by the

second term on the right hand side of (25). Thus the resonance condition is

where

(26a)

(26b)

The appropriateness of this definition can be seen by solving (25) for vII and

subtracting initial values:

VII (t) - vila = [2 W1m - 2 CT (7) D Ik)2 cos ¢ ]1/2 It (27)
N 1)2 a z N a

where CT 2 is the sign of the coefficient of cos ¢N in (25). If (26) is satisfied
1)

the quantity in square brackets is of first order, hence

When (26) is not satisfied Vi is much greater than the term proportional to
N

7)2 in (27), and we can expand the square root, to obtain

"V "V [ 1]VII (t) - vila ~ 0 (amp.) .

(28)

Thus (26) correctly gives the condition for an enhanced or resonant interaction.

13



It follows immediately from (24) that

v2 (t) - ~5 ~ 0 [(amp. )1] I

and it follows from (28) and (29) that

rv rv [ 1/2]
Vl(t)-VlO~O (amp.) .

To lowest order in the square root of the wave amplitude one can ignore the

(29)

(30)

small variation with time of VOl (t) in terms which are already of first order, in

(24), (25), and (18). Thus

d vII D5 rv

-- '" - 0- YJ2 sin ¢
d t k ~2 0 N

z

where YJo == YJ (vl 0)'

(31)

(32)

(33 )

The path of a particle in the two dimensional phase space with coordinates

¢N' vII can be determined by solving (32) for ¢N and plotting ¢N versus v II •

A typical set of such paths, for a fixed value of vla and several different values

of WN, is illustrated in Fig. 1. Note that the angle ¢N is bounded for particles

following the closed orbits. Such particles are said to be trapped.

14



'"V

Eq. (32) may also be used to eliminate ¢N from (33). The resulting equation

may be written in the form

where

d s =- (TJo Do I r) d t

r 2 =2(1+k2 WIffiTJ2D2)-1
z N 0 0

(34)

(35 )

Eq. (34) is the equation satisfied by the Jacobian elliptic function Of dn (s, r). Thus

The function dn (s, r) is periodic in s. The period of the motion, for untrapped

particles, is

where K(r) is the complete elliptic integral of the first kind. For untrapped

particles with velocities greater (less) than N~/kz one chooses the lower

(upper) sign in (36). The phase constant t+ is any time at which the quantity

(37)

IvII - N~/kz I has its maximum value. The parameter r classifies the particle-'

orbits according to type. r is greater than one for trapped particles, with r ---> ro

for particles in the center of the nested set of closed orbits in Fig. 1. r has

the value unity for particles on the separatix and is less than one for untrapped

particles, with r :;:, 0 [(amp)1/2] for nonresonant particles. 13

15



Strictly speaking, (36) is valid for both trapped and untrapped particles, since

dn (s, r) is defined by analytic continuation when r > 1. It is convenient, however,

to reserve the use of (36) in its present form for untrapped particles (r < 1), and

to use the identity dn (s, r) == cn (rs, l/r) when r ~ 1. Thus

(38)

(39)

for trapped particles. We have omitted the upper sign on the last term in (36),

in deriving (38). Adding one half period to t + changes the sign of the elliptic

function cn, hence no generality is lost through this omission.

After solving (32) for ¢N and using (35) and (36), one has

(40)

The time dependence of v1 is found by solving (31) for V1
2, subtracting initial

values, and using (36) and (40). After taking and expanding the square root of the

resulting equation, one has

to lowest order in (amp.)1/2. Again, one can use the identity dn(s, r)== cn (rs, l/r)

for trapped particles.

16



In summary, the major effect of the resonance on the motion of single

particles is to induce the particles to execute large amplitude (rv amp. 1/2), long

period (rv amp. 1/ 2 ) oscillations about their zero order traj ectories. Super-

imposed on these large motions are rapid, small amplitude oscillations.

III. SATURATION OF RESONANCE DAMPING

The physical mechanism underlying the Landau damping of electrostatic

14
waves was described by Dawson in 1961. Dawson demonstrated that the

damping was due to the presence of resonant particles which move with velocities

very close to the wave velocity. These particles exchange energy with the

wave on a time scale long compared with the period 21T/w. If the resonant

particles are initially distributed or bunched in phase space in such a way that

more particles gain than lose energy, then the wave damps, by conservation

of energy. The kinetic energy of a resonant particle in a. sinusoidal potential

oscillates in time, but the period of oscillation approaches infinity if the wave

amplitude is infinitesimal. Thus a very small amplitude wave damps monotonically.

If the wave amplitude is large the periodic nature of the particle motion

can not be neglected. This situation has been treated by O'Neil. 1 After a time

of the order of a half period of a typical resonant particle's motion, and if the

wave amplitude has not changed too much in the meantime, most of the particles

which were initially gaining energy begin to lose energy, and vice versa. The

damping coefficient then changes sign, and the wave amplitude begins to oscillate.

17



The bunching of resonant particles in phase space, required for a net exchange

of energy between wave and plasma, cannot be maintained indefinitely. The fre­

quency of oscillation of a particle in a potential well of the wave depends on

the particle's energy, and the spectrum of oscillation frequencies is broad. Thus,

phase mixing of resonant particles eventually causes the damping coefficient to

vanish entirely. In the absence of instabilities one is left with a wave of constant

amplitude.

The cyclotron, damping of a finite amplitude whistler wave propagating parallel

to a background magnetic field has been shown to saturate in the same way?

In the preceding section we have shown that the motion of particles in

resonance with an obliquely propagating wave exhibits, to lowest order in (amp.) 1/2,

all of the features relevant to the nonlinear damping process described above.

That is:

1. resonant particles exchange energy with the wave on a time scale long

compared with 27T / w;

2. the kinetic energy of a resonant particle in an oblique wave is periodic

in time;

3. the spectrum of resonant particle oscillation frequencies is broad.

One therefore expects that the damping of a finite amplitude oblique wave should

also vanish after some time, to lowest order.

18



In this section we shall describe the resonance damping of an obliquely

propagating wave in the nonlinear regime. Our purpose is not to provide a

fully detailed picture of the damping process, but rather to determine the time

dependence of the nonlinear damping coefficient in a simple, somewhat heuristic

way. Specifically, we shall assume that the damping coefficient obtainable from

the linearized theory,

. (41)

is known, and describe the nonlinear coefficient y(t) in terms of functions hN(t),

defined by the relation

it Y (t) d t =L YLN ~ (t).

o N

The index N numbers the contributions from the various resonances.

(42)

Following the method used in Ref's. 1 and 2, we begin with the energy conser-

vation equation. If the amplitude parameters Ek , B
i

have a time dependence of

the form

A(t) 0 Au exp U' y(t) d~'

then the energy equation in the lab frame is

2 Q1 Y (t) + P n r (t) + L [p r (t)] N = 0

N

19
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where

The quantity 2Q
1

y is the time rate of change of the wave energy per wavelength.

P nr andL (Pr)N represent the rate of energy absorption per wavelength by non-

resonant and resonant particles, respectively.

The time scale on which the wave amplitude varies is assumed to be much

longer than the period of oscillation of a nonresonant particle, hence adiabatic

invariants exist which relate the constants of motion of a nonresonant particle

at any given time to the instantaneous value of the wave amplitude. If follows

from this that the total kinetic energy per wavelength of nonresonant particles

depends on time only through the wave amplitude. Hence

d
Pnr (t) == Cit (K. E. )nr =Q2 y (t)

where Q 2 is a function of the wave amplitude and various constants.

After using (44) in (43), the latter equation may be solved for y (t).

Y (t) = - L [(P r\N/(Ql + Q2)J {[P r (t)JN/(P r)LN}

N

(44)

(45)

where (Pr )LN is the value of [Pr (t) JN obtainable from the linearized theory. If

we recall that linearized theory provides an adequate description of the behavior

of nonresonant particles, in the present approximation, it follows from a com-

parison of (41), (42), and (45) that

20



(46)

The rate of energy absorption by resonant particles is given by the relation

1
27T

(, 2 w y 2 ) ]

d
3

V 0 de\"' +~ + :; f (e. :to tJ(4
7

)

The quantity in parenthesis in the integrand above is the square of the lab frame

velocity. f is the distribution function, and V
N

is the volume in velocity space

associated with the Nth resonance. To estimate the relative magnitude of the

various terms in (47), it is helpful to write [Pr(t)]N in the alternative form

1
[p (t)] =- m

r N 2 Iff

The constant w 2 /k2 vanishes under the time derivative and makes no contribu-
z

tion. If saturation occurs before the wave amplitude has changed very much the

approximate trajectories developed in Sec. II may be used to express y2 (e , v ,
o "-'0

t) and VII (eo' ~o' t). v 2 and VII may be separated into fast and slow parts. As

far as damping is concerned, the important effect of the resonance is to produce

the large, slow deviations from the zero order particle trajectories described

21



by the slow variables. Thus we consider only the slow parts. It follows from

(18) that d~11 /dt is a first order quantity, while (21) and (36) indicate that av2/dt

is of the order (amp.)3/2. (After integration the Vii term is of order (amp.)2 ,

while the v2 term is of order (amp.)5/2.) Thus, to lowest order,

(48)

We shall assume that f is Maxwellian when the wave is "turned on" at t = O.

The small deviation from thermal equilibrium required to support the wave

initially will be neglected. In general, this initial perturbation phase mixes away

rapidly and makes no significant contribution to the damping. In a collisionless

plasma the phase space density in the vicinity of a given particle is conserved,

hence

"-2 "-
where v 0' viiO are the values of v2, VII

(49)

at t = 0 for a particle at e, ~ at time t,",

and A is a normalization constant. The right hand side of (49) will be expanded

in the wave amplitude. It follows from (28) and (29) that the lowest order time

dependent term in the expansion will be of order (amp.)1/2 and will come from

\j10 ('8, ~1 t). To this order, v~ :{; v 2. Thus, after setting viiO equal to ND/kz

plus the small quantity (vIIO - ND/k z ) and expanding, we have

22



(50)

The integral in (48) can be evaluated if one additional simplifying assumption

is made. We shall assume that the perpendicular velocity of a typical resonant

particle is small compared with Do Iky ' and neglect terms of order (ky ~i IDof ==

u} Thus, for N = 0, (26b) gives

= ('" I' ('\21 1/ 2 "'21)0 - 1) Vio):: qkz Ek cos a/mHo + o(uiO ).

When N = ±l, 1)0 is proportional to VL1
/

2
• For a resonant particle v

iO
=

(ND/kz)2J 1/2 + 0 [(arnp.)1/2J . Thus, when N = ±1

1/2

1)0 :: I(q/mDo) [~(B1Y ± B1) + ky E~ cos a/2DJ I

(51)

[v 2 -

(52)

When INI ~ 2, 1)0 ~ 0 (ufo)' It follows from this last relationship and (36),

(45), (48), and (50) that

(53)

When N = ±1, the oscillatory part of the motion described by (35), (36), (38),

and (52) is identical to the approximate parallel oscillatory motion of a particle

23



in resonance with a whistler wave propagating along the magnetic field, if the

wave number and amplitude of the whistler are given by

=k
z

B
1. eff.

1=- (B ± B ) + k y Ek' cos a/2Do'2 Iy Ix

[See Eq.'s. (21a), (21b), and (22) of Ref. 2.J In addition, (48) and (50) are

identical in form to the corresponding equations [(25), (26') and the first eq.

in Appendix B of Ref. 2.J for the parallel propagating whistler. The rate of

energy absorption by particles in resonance with a parallel propagating whistler

is calculated explicitly in Ref. 2. We can therefore obtain expressions for

[P
r

(t) ] ±1 by making appropriate generalizations of the constants in the results

of this earlier work.

Similarly, it is easily shown that (35), (36), (38), and (51) make the evaluation

of (48) in the case N = °mathematically equivalent to the calculation of P
r

(t) for

a finite amplitude electrostatic wave. We can obtain [P (t)J by making approp-
r 0

1
riate generalizations of the constants in O'Neil's result.

Finally, it is demonstrated in Ref's. 1 and 2 that, for N = 0, ± 1,

where TN is the period of oscillation (slow) of a typical resonant particle.

24
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After following the procedure for finding [Pr (t)] O,±1 outlined above and

using (46) and (54), we have

(J)

ho(t) :: TO L
n=O

217r (1 _cos fC2n + 1) 17tl)}
l2K(r)To J

where q = exp {-17K ([1 - r 2J1/2 )/K(r)} and

and

c ~
h (t)-29~/2~T

±1 - C ±1
1

(55)

1- exp {-[(n17/2C1~OrK)(tIT±1)]2} cos [(n17/rK) (tIT±1)]

r 4 K(r) (1 + q2n) (1 + q-2n)

n=O

[1 - exp (- { [(2n + 1) 1714C1 ~oK] (t IT±1 )}2) cos{[(2n + 1) 1712K] (t IT±1)}] r)
K(r) (1 + q2n+1) (1 + q-2n-1)

(56)
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where

When these results are substituted into (53) our estimate of the damping

coefficient is complete. The time variation of ho(t) has been described in the

introduction to this section. The behavior of the functions h l (t) and h_l (t) is

similar, and is sketched in Fig. I s 3 and 4 of Ref. 2.

The asymptotic values ho.±l (00) have been calculated in the papers quoted

above. One finds that

In deriving (55) and (56) we have assumed that saturation occurs before the

wave amplitude changes appreciably. This assumption is justified if feDydt« 1.

o

In a multi-component plasma, these results represent the contribution of

anyone species to the total damping coefficient.

IV. SUMMARY

We have found approximate solutions, of relatively simple form, to the equa-

tions of motion for a particle in resonance with a small finite amplitude wave
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propagating at an angle to a magnetic field in a plasma. These solutions can be

applied to the study of several important effects which involve resonant particles.

One such effect, resonance damping, has been considered here. We have

shown that the resonance damping coefficient for a finite oblique wave vanishes

after a few bounce times, leaving, in the absence of instabilities, an undamped

wave.
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Figure 1. Phase plane trajectories for typical trapped and untrapped resonant particles.
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